QUADRATIC THEORY IN BRIEF.

Given $a x^{2}+b x+c=0$
then $x=\frac{-b \pm \sqrt{ }\left(\boldsymbol{b}^{2}-\boldsymbol{4 a c}\right)}{2 a}$

1. Use the quadratic formula to solve these equations (solutions to 2 dec pl .)
(b) $\quad 5 \mathrm{x}^{2}-7 \mathrm{x}-11=0$

$$
a x^{2}+b x+c=0 \quad a=5 \text { but } b=-7 \text { and } c=-11
$$

$$
x=\frac{-b \pm \sqrt{ }\left(b^{2}-4 a c\right)}{2 a}
$$

$$
=\frac{+7 \pm \sqrt{ }(49-4 \times 5 \times(-11))}{2 \times 5}
$$

$$
=\frac{+7 \pm \sqrt{ }(49-4 \times 5 \times(-11))}{2 \times 5}
$$

$$
=\frac{+7 \pm \sqrt{ }(269)}{10} \quad(N B \text { this is the "exact" answer!) }
$$

$x=2.34$ or $-0.94 \quad$ (NB this answer is only an approximation)
$x=\frac{-b \pm \sqrt{ }\left(\boldsymbol{b}^{2}-\mathbf{4 a c}\right)}{2 a}$
THE DISCRIMINANT $\quad \boldsymbol{\Delta}=\boldsymbol{b}^{2}-\boldsymbol{4 a c}$
REMEMBER: The solutions of an equation are where the graph of the equation crosses the x axis.

$$
\begin{aligned}
& \text { (a) } 3 \mathrm{x}^{2}+9 \mathrm{x}+5=0 \\
& a x^{2}+b x+c=0 \\
& x=\frac{-b \pm \sqrt{ }\left(\boldsymbol{b}^{2}-\mathbf{4 a c}\right)}{2 a} \\
& =\frac{-9 \pm \sqrt{ }\left(\boldsymbol{9}^{2}-\mathbf{4 \times 3 \times 5}\right)}{2 \times 3} \\
& =\frac{-9 \pm \sqrt{ }(21)}{6} \quad \text { (NB this is the "exact" answer!) } \\
& x=-0.74 \text { or }-2.26 \quad \text { (NB this answer is only an approximation) }
\end{aligned}
$$

"COMPLETING THE SQUARE" METHOD.

2. Show clearly how to solve each of the following 4 equations by completing the square (even though 2 of them factorise)
and state how the discriminant affects the type of solutions.
(a)

$$
\begin{aligned}
x^{2}-8 x+7 & =0 \\
x^{2}-8 x & =-7 \\
x^{2}-8 x+16 & =-7+16 \\
(x-4)^{2} & =9
\end{aligned}
$$

so $\quad x-4=3$ or $x-4=-3$ $x=7$ or 1
The solutions are where the graph crosses the x axis.
$\Delta=8^{2}-4 \times 1 \times 7$
$=64-28$
$=36$ (a perfect square) so we get 2 rational sols

(b)

$$
\begin{aligned}
x^{2}-8 x+16 & =0 \\
x^{2}-8 x & =-16 \\
x^{2}-8 x+16 & =-16+16 \\
(x-4)^{2} & =0
\end{aligned}
$$

$$
x=4
$$

The solutions are where the graph crosses the x axis.

(c)

$$
\begin{aligned}
\mathrm{x}^{2}-8 \mathrm{x}+5 & =0 \\
x^{2}-8 x & =-5 \\
x^{2}-8 x+16 & =-5+16 \\
(x-4)^{2} & =11 \\
x-4 & = \pm \sqrt{ } 11 \\
x & =4 \pm \sqrt{ } 11 \\
& \approx 7.32,0.683
\end{aligned}
$$

The solutions are where the graph crosses the x axis.

$$
\begin{aligned}
& \Delta=8^{2}-4 \times 1 \times 5 \\
&=64-20 \\
&=44 \quad \text { so } \text { we get } 2 \text { irrational sols. because } 44 \text { does not have } \\
& \quad \text { an exact square root. }
\end{aligned}
$$

(d) $\mathrm{x}^{2}-8 \mathrm{x}+20=0$

$$
\begin{aligned}
x^{2}-8 x & =-20 \\
x^{2}-8 x+16 & =-20+16=-4 \\
(x-4)^{2} & =-4 \\
\text { Can't find } & \vee-4
\end{aligned}
$$

The solutions are where the graph crosses the x axis

$\Delta=64-80=-16$ so no real sols.
3. The Discriminant is $\boldsymbol{\Delta}=\boldsymbol{b}^{2}-\mathbf{4 a c}$.

State what type of solutions you get if the discriminant is :
(a) 0
$=1$ rat sol
(graph sits on x axis)
(c) 2 or 3 or 5 or 6 etc
$=2$ irrat sol
(graph crosses x axis at numbers
which are SURDS (eg $\sqrt{ } 3$))
(b) 1 or 4 or 9 or 16 etc $=2$ rat sol
(graph crosses x axis at whole numbers or fractions)
(d) -1 or -5 or -76 etc
= NO real solutions
(graph does not cross x axis)

EXAMPLES

1.

Find the value of \boldsymbol{p} so that
$x^{2}-10 x+p=0$ has one solution.
This will have only 1 solution if the graph sits on the \boldsymbol{x} axis.
In which case, the discriminant $=0$

$$
\begin{aligned}
\Delta=100-4 p & =0 \\
100 & =4 p \\
25 & =p
\end{aligned}
$$

Note: if $p=25$, the equation is $x^{2}-10 x+25=0$ so that $\quad(x-5)^{2}=0$
and the only solution is $x=5$
2.

Find \boldsymbol{p} so that $\boldsymbol{x}^{2}+(p+2) x+(3 p-2)=0$ has only one rational solution.

This will have only 1 solution if the graph sits on the \boldsymbol{x} axis.
In which case, the discriminant $=0$

$$
\begin{aligned}
\Delta=(p+2)^{2}-4(3 p-2) & =0 \\
p^{2}+4 p+4-12 p+8 & =0 \\
p^{2}-8 p+12 & =0 \\
(p-2)(p-6) & =0 \\
p=2 \text { or } 6 &
\end{aligned}
$$

Some students find this "double" answer confusing:

It means that if $\mathbf{p}=\mathbf{2}$ the equation $x^{2}+(p+2) x+(3 p-2)=0$

$$
\text { becomes } x^{2}+4 x+4=0
$$

and THIS equation only has 1 solution ($x=-2$)

AND
It means that if $\mathbf{p}=6$ the equation $x^{2}+(p+2) x+(3 p-2)=0$

$$
\text { becomes } x^{2}+8 x+16=0
$$

and THIS equation only has 1 solution ($x=-4$)

