QUADRATIC THEORY IN BRIEF.

Given
$$ax^2 + bx + c = 0$$

then $x = \frac{-b \pm \sqrt{(b^2 - 4ac)}}{2a}$

1. Use the quadratic formula to solve these equations (solutions to 2 dec pl.)

(a)
$$3x^{2} + 9x + 5 = 0$$

 $ax^{2} + bx + c = 0$
 $x = \frac{-b \pm \sqrt{(b^{2} - 4ac)}}{2a}$
 $= \frac{-9 \pm \sqrt{(9^{2} - 4 \times 3 \times 5)}}{2 \times 3}$
 $= \frac{-9 \pm \sqrt{(21)}}{6}$ (NB this is the "exact" answer!)
 $x = -0.74 \text{ or } -2.26$ (NB this answer is only an approximation)

(b)
$$5x^{2} - 7x - 11 = 0$$

 $ax^{2} + bx + c = 0$ $a = 5$ but $b = -7$ and $c = -11$
 $x = \frac{-b \pm \sqrt{(b^{2} - 4ac)}}{2a}$
 $= \frac{+7 \pm \sqrt{(49 - 4 \times 5 \times (-11))}}{2 \times 5}$
 $= \frac{+7 \pm \sqrt{(49 - 4 \times 5 \times (-11))}}{2 \times 5}$
 $= +7 \pm \sqrt{(269)}$ (NB this is the "exact" answer

$$= \frac{+7 \pm \sqrt{(269)}}{10}$$
 (NB this is the "exact" answer!)

$$x = 2.34 \text{ or } -0.94$$
 (NB this answer is only an approximation)

$$x = \frac{-b \pm \sqrt{(b^2 - 4ac)}}{2a}$$
THE DISCRIMINANT $\Delta = b^2 - 4ac$

REMEMBER: The solutions of an equation are where the graph of the equation crosses the x axis.

"COMPLETING THE SQUARE" METHOD.

- 2. Show clearly how to solve each of the following 4 equations by completing the square (even though 2 of them factorise)
- and state how the **discriminant** affects the type of solutions.

(a)
$$x^2 - 8x + 7 = 0$$

 $x^2 - 8x = -7$
 $x^2 - 8x + 16 = -7 + 16$
 $(x - 4)^2 = 9$

so
$$x-4=3$$
 or $x-4=-3$
 $x=7$ or 1

The solutions are where the graph crosses the x axis.

$$\Delta = 8^2 - 4 \times 1 \times 7$$
$$= 64 - 28$$

= 36 (a perfect square) so we get 2 rational sols

(b) $x^2 - 8x + 16 = 0$ $x^2 - 8x = -16$ $x^2 - 8x + 16 = -16 + 16$ $(x - 4)^2 = 0$

The solutions are where the graph crosses the x axis.

$$\Delta = 8^2 - 4 \times 1 \times 16$$
$$= 64 - 64$$

= 0 so we get 1 rational sol.

 $y = x^2 - 8x + 16$ $= (x - 4)^2$

(c)
$$x^2 - 8x + 5 = 0$$

 $x^2 - 8x = -5$
 $x^2 - 8x + 16 = -5 + 16$
 $(x - 4)^2 = 11$
 $x - 4 = \pm \sqrt{11}$
 $x = 4 \pm \sqrt{11}$
 $\approx 7.32, 0.683$

The solutions are where the graph crosses the x axis.

$$\Delta = 8^{2} - 4 \times 1 \times 5$$
= 64 - 20
= 44 so we get 2 irrational sols. because 44 does not have an exact square root.

(d)
$$x^2 - 8x + 20 = 0$$

 $x^2 - 8x = -20$
 $x^2 - 8x + 16 = -20 + 16 = -4$
 $(x - 4)^2 = -4$
Can't find $\sqrt{-4}$

The solutions are where the graph crosses the x axis but it does not cross the x axis so there are no real solutions.

 $\Delta = 64 - 80 = -16$ so no real sols.

- 3. The Discriminant is $\Delta = b^2 4ac$. State what **type** of solutions you get if the discriminant is:
- (a) 0 = 1 rat sol (graph sits on x axis)
- (c) 2 or 3 or 5 or 6 etc = 2 irrat sol (graph crosses x axis at numbers which are SURDS (eg $\sqrt{3}$)
- (b) 1 or 4 or 9 or 16 etc = 2 rat sol (graph crosses x axis at whole numbers or fractions)
- (d) -1 or -5 or -76 etc = NO real solutions (graph does not cross x axis)

EXAMPLES

1.

Find the **value** of p so that $x^2 - 10x + p = 0$ has one solution.

This will have only 1 solution if the graph sits on the x axis. In which case, the discriminant = 0

$$\Delta = 100 - 4p = 0$$

$$100 = 4p$$

$$25 = p$$

2.

Find p so that $x^2 + (p+2)x + (3p-2) = 0$ has only one rational solution.

This will have only 1 solution if the graph sits on the x axis.

In which case, the discriminant = 0

$$\Delta = (p+2)^{2} - 4(3p-2) = 0$$

$$p^{2} + 4p + 4 - 12p + 8 = 0$$

$$p^{2} - 8p + 12 = 0$$

$$(p-2)(p-6) = 0$$

$$p = 2 \text{ or } 6$$

Some students find this "double" answer confusing:

It means that if p = 2 the equation $x^2 + (p+2)x + (3p-2) = 0$ becomes $x^2 + 4x + 4 = 0$ and THIS equation only has 1 solution (x = -2)

S 1 SOLUTION (X =

AND
It means that if p = 6 the equation $x^2 + (p+2)x + (3p-2) = 0$ becomes $x^2 + 8x + 16 = 0$ and THIS equation only has 1 solution (x = -4)

